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Abdrsct. We show wjth the aid of a canonical tcaansfarmation that separares charge and 
sprn degrees of freedom thzl the strongly earrelaled one-dm"!onal Hubbard model with 
mftnite (U = m) on-sile iepulrion is related to a correspndmg spinlesr free-femlon 
lattice model. Thermodynamic properties of the two models are shown to be closely 
related whereas the single-particle two-site Function ior the U = m model IS s h o w  
lo be related to a modified many site funclion for the spmless model which involves 
many-point cmelations The latter IS shown to be expressible !n terms of the inverse of 
a certain malm which should be amenable 10 numerical and analyticai analysis. 

1. ~ ~ ~ ~ ~ E ! ~ ~ ~ ~ ~  

The Hubbard model [I] has ieeceived considerable attention over the years as a possi- 
ble model for itinerant ferromagnetism [2-4], and more recently as a prototype model 
for Strongly corre!atcd electron systems, of which the high-:emperature superfonduc- 
tors a?e thought to be an example [5,6]. 

In spite of much effort thele are very few rigorous rcsults for the Wubbard 
model. Certain grounri-state properties aie known exactly for the onedimensional 
model 17.81, and in higher dimensions it is known that with one hole in an othenvise 
half-filled band, the ground state fi ferromagnetic [SI. The only claimed exact results 
at finite temperature, of which the authors are aware, are the expressions derived by 
Sokoloff [IO] and Beni et 01 [ill for certain properties of the onedimensional model 
io the strong mrrelation limit of infinite (U = a) on-site repulsion. Unfortunately, 
both sets of resutis contain errors which are due in the main to an incorrect mix- 
ing of canonical and grand-canonical descriptions of the model. Nevertheless, the 
basic observation by S~koloff and Beni er a1 , which is correct and has been n o t a  
subsequently hy other authors [12], is that for the U = CO model in one dimension, 
the charge and spin degrees of freedom separate and hence the model is In essence 
equivalent to a corresponding spinlzss free-fermion model. 

Our aim in this paper is to demonstrate this equivalence explicitly through 3 
canonical transformation to operators corresponding to new particles which have Only 
'chwge' or 'spin'. The special Eeature of the one-dimensional Li = cc model, that 
spin mnfigsrations of the fermions mast be preserved, allows us to easily eliminate 
one of the new species of particles. 

03';5-M70Nl~25327+12503.50 @ 1991 IOP Publishing Ltd 5321 
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As we will show, the thermodynamic properties of the U = a7 model ale in fact 
equivalent to those of a spinless free-fermion model hut care needs to be exercised m 
relating the chemical potendals of the two models. We will also show that the single- 
particle two-site function for the U = M model is expressible in terms of a modiied 
nany-site function for the spinless model which is unfortunate$ quite complex from 
a computational point of view. 

In outline this paper is orgamed as foollows. In section two we define the problem 
and summarize our main results. The canonical transformation to ‘charge’ and ‘spin’ 
particles is introduced in section 3 and a simple relation connecting the canonical 
partition functions for the U = CO and the spinless free-Fermion model is derived. 
Similar, but more omplicated relations, for the single-particle two-site functions 
in the canonical and grand-canonicai ensembles are derived in sections 4 and 5 
respectively and in section 6 we derive some thermodynamic properties of the model. 
We conclude in section 7 with a discussion of o w  results. 

2. The mode! slad statemetit of the main resalts 

In the strong correlation limit with uifinlte onaite repulsion, the Hamiltonian for the 
one-dimensioaal Hobhard model with V-sites and nearest-neighbour bopping energy 
t can be witten as I131 

31, = --t (eoa,+,, + e+i2,0) (2.1) 
#=I 
0 

where 

(2.2) - 
E,o - c*c(l - .,-,). 

In (2.2) cro ( e S )  I.$ the usual destruction (creation) operator for a fermion with spin 
U =T,! cn site i an6 nLb = cl,c,, is the number operator fer a fermion with spin 
U on site i. 

The canonical partition function for tke model (2.1) with N particles of either 
spin 8 given by 

Zg(I’, T) = Tr{,) [Pexp (-,BX=)Pj (2.3j 

wbere 

V 

= fl(1 - n&!i (7-4) 
.=I 

projects out doobly occupied sires in the trace 
particie states. 

whcR is taken over all N -  

In the foilorviitg section we show that 

Z$-,(V.T) =2”-Kz;,(v-,T) (25) 
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is the canonical partition function for K spinless Fermions with Hamiltonian 

V 

and a, ( a!) is the destruction (creation) operator for a spinless fermion at site i. 
The relation (2.5) is a direct consequence of the fact that for the U = 00 model 

in one dimension the on$ way particles can move on the lattice is by exchanging their 
position witin a hole. Spin degenemcy gives rise to the factor 2V-K in (2.5) and the 
K spinless particles in (2.5) and (2.7) are essentially the holes in the U = M model. 
A detailed derivation of (2.5) is given m the following section using a canonical 
tiansformation that separates the charge and spin degrees of freedom. 

in a siqilar fashion we show in section 4 thae ( m  2 1 9 2 )  

where we have used fhe notation developed above. 
In essence, the complicating product term 17 (2.8) allows for the fact that wn- 

figwarions with spin --a particles between sites I and m do not contribute to the 
left-hand side of (2.8), and hence sph degrees of freedom are reduced by a factor of 
two to the pwer of m - 1 - 1 mims the number of holes between sites 1 and m. 

3. The eaoonied Brausformatioan 

'Ib begin, we first consider the vacuum sfate 10) for the spinless Fermi parrirks in 
(2.7) which we define to be the state where a!! sites are occupied by either up 01 

down spin electrons with YLO doubly occupied sites. Such a state may be expressed as 

where 10) denotes the true vacuum. The expression (3.1) is not the only possible 
definition of the vacuum hut it will prove most convenient for our purposes. In 
paxicuiar, given (3.2), it is natural to define new operators h, end s, by 

h, = 2-1'yc,T 4" CZij (3.2) 

and 
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We observe that (3.2) and (3.3) constitute a canonical transfom,ation on the 
operators qT, cII and hence both sets of operators { h i } ,  {s,} and their Hermitian 
conjugates { h ! } ,  {s!} satisfy the usual Fermi anticommutacion relations. We also 
note that hi creates a particle at site t which has 'charge' but RO 'spin' while s! 
Creates a particle at site i which has 'spin' but no 'charge'. 

We will subsequently refer to these new Fermi particles as h- ?nd s-particles. 
Again, it should be noted that (3.2), (3.3) is not the only possible canonical 

transformation on cIT, til. A rotation through any 'angie', hieiiidhg ?rj4 hi (3.2), 
(3.3), in fact produces identical results but without the interpretation mentioned 
above. 

In order to re-express 7t, (2.1) in terms of h, 2nd 8, operators, it is convenient 
to define the dressed operators h, and by 

& , = h a ( Z - s j s , )  S , = s * ( I - h f h , ) .  (3.4) 

Ex, = 2 - q l ;  f s,) i. il = 2 4 2 ( L ,  - :") . (3.5) 

It then follows .easily from the definitions (Z.2), (3.2) ana (3.3) &het 

and on substitEtion into (2.1) that 

la order IO evaluate the trace in (2.3) we note that the projection operator P in 
(2.4) can be expressed in terms of the hi and s, operators as 

Y - 
P = bl(l - hjh,sls,)  (3.7) 

r = i  

After projection by P each site can be occupied by either a hole, an h-particle or an 
a-particle, giving rise to a total of 3v allowed states for a lattice of V sites. 

The spxiai feature now of one dimension in the strong correlation limit, is that h- 
and s-particles cannot hop over one another and hence movement of ihese particles 
is on@ made possible by movement of holes. mi means that once a confrgurationai 
arrangement of h- and s-particles is specified on a one.dimensiona1 lattice, it must 
be left invariant during motion of holes. Tnis restriction causes a great deal of 
degeneracy in the diagonal elements of P e ~ p ( - 3 % ~ ) P .  To be more speciiic, if 
we consider a chain of V sites, of which 1%. 316 occupied h) holes, the remain& 
A' = V - K sites may be Ompied by either h- or s-particles. However, so far as 
the diagonal elements in lhe trace (2,$ arc moncee.nedj both h- an@ g-nm:irlec dsri 
the Same role and henLe all configurations with the same value of N give ?he same 
contribution to the trace. It thus follows that for given N, 2N = 2V-K d' rfferenr 
configurations give rise to the Same contribution to the trace (2.3) and we a n  write 

r-. -.-.-_ r--, 

TrIN] [Pexp(-P%,)P] = 2V-K Tr:;{[exp(--p7&)] (3.8) 

wneic iriKj denotes a trace over the subspace in which il; hoies and V - A' h- 
panicles only are included. In this particular subspae where there are no s-particles, 

...L... - ~ l h l  



S~~ongb,-comelated Hubbord chain. I 5331 

the s,-operators in 8- have a null effect and thus H, on the right-hand side of 
(3.8) can be q l a c e d  by 

v 

.Hg) = - t z ( h t h , + ,  -I- h!+,h,). 
,=I 

Finally, if we define the destruction operator for a hole on site i hy 

a t -  - ( - 1 y  h, t 

where the factor (-l)<-' in (3.10) is chosen so that 

(3.9) 

(3.10) 

a!iO)= hihi...h! -,h!+, . hLl8) (3.11) 

then .H'_h) is transformed into Xu defined by (2.7) and 

Tr&[[ex~!-P%,)] = T r t ~ 1  [exp(-pH0)] (3.12) 

where TrjK) is now the trsce in the space spanned by the states 

li,i,...i,)= a!,a!; a!,10) (3.13) 

with K holes and 10) is the vacuum state defined by (3.1). 
Combining (3.8) and (3.22) gives the stated result (2.5). 

4. C a n ~ ~ i ~ a l  Cora of the singk-padick Wm-%ile ~WICK~QXI 

For our present purposes we define the canonical single-@article two-site function by 

~exp!-FX,)'Wc!tc,t 1 9 c!lc,l)] (4.1) 
2 

= Zg(V,T)-'TrlN1 

where we have used the notation developed in the previom two sections. For want 
of a better name we call (4.1) the singbparticle two-site function in the canonical 
ensemble. 

As we will see h a moment, even though charge and spin degrees of freedom 
separate in the one4imensional U = 00 model and the thermodynamic properties are 
essentially equivalent to those of a spinless free-fermion model, correlations between 
particles are maintained and it is by no means an easy task to evaluate (4.1) for 
arbitrary lattice sites 1 and m. 

In terms of the h,- and s,-operators (3.2), (3.3) the trace ii? (4.1) can be written 
a 

T q N l  [p exp(-P.H,)phfh,j 

(4.2) - = C'(qz2. .2,1exp(-P~~)hjh,/z1~2...rv) 
{=> 
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where use has been made of the fact that the tramformed Hamiltonian (3.6) 1. 
symmetric wth respect to h- and s-partides. In order to clarify our subsequent 
argument, we have expressed the trace in (4.2) as a sum over all 3" allowed states 
{z] = (z,, z 2 , .  . . , q,), with zz = 0, h , s  denoting occupation of the ith site by a 
hole, an h-particle or  an s-particle respectively, and the prime on the sum denoting 
a sum over such states with a fixed total number N of h- and s-particles. 

T Mntsubnrn nnd C J Thompson 

Since, hy definition, 

hjh,jz,z, "Z") 

[ I Z ~ . .  ~ r - l h z l + l . . . ~ , _ , O ~ , + ,  ..zV) z t = O  andx,,,=h 

(0 othmise  
(4.3) 

- - 

it f&!S%?S fhac 

TI [P exp( - P X  )P h: h m ]  

- - q - l O q + l  .."m-lhzm+l...~vIexp(-PX,) 
{ z h , m  

x Ill. zr-,h2.1,, ..=?.&)=,+L.' .v) (4.4) 

where {z},,, = (q,. . . ,I~-~,~~+,,. . . ~ ~ ~ - , , q , , + ~ ,  . . . , z v )  and the primed 
sun is over these restricted coniiguratiom with a total nuntoer Jf N - 1 h- and 
s-particles. 

Again, since. 'H, prevents the exchange of an h- and 8n s-particle, the matrix 
elements in (4.4) behveen states which have an s-particle bemeen sires 1 and m must 
Tr...kh l h r  nnP- "k":.. +Lie -a.,"- tL", - CAr I L 1 .. I / - -i -... C f  Ln a:rs.ar 
.YilO... &"I a.. u p -  L . L . L U I ,  L i l y  . i l - .Yi lO L U Y I  La  ,"E " I p ' p ,a' - , .,,.A,% U% I I , L . l L i  

0 or h. Fer the periodic chin I% = 0 or h for m f 1 < i < V or 1 < z < 1 - 1 
is an additional possibility but since this involves a macroscopic number of particle 
movemen2 in (4.4) its contribution is negligible in the thermodynaxic limit. 

In order to reduce the evduation of (4.4) to a spinless free-fcrmion problem, we 
follow the argument leading to (3.8) to wnte 

TrIN] ['P exp(-Cili,)Phfh,] = 2"IK Tr~~~[exp( -P~n , )h jh , czJ  (4.5) 

where N = V - K, the notation is as before, and the operator cd is introduced to 
correct for the fact that there is no donb!e degeneracy Factor for siies between 1 and 
m. Thus if we consider a state IH) which has H h-particles between site 1 and m, 
the degeneracy factor should be 2"-H rather than ZN in (3.8). We therefore require 

QIH) = 2-"/w) (4.6) 

that is, 



Strong&-cotrelared Hubbard chain: I 5333 

Finzlly, when we combine the above results and transform to the hole operators 
a ,  defined by (3.10) we ohtam 

T r p - K j  [?'ex~(--PX,)Ph]h,]  

which, together with the steps leading to (4.2) gives the stated result (2.8) 

(5.3) 

where 

(5.5) 

(55.6) 

log2 when i = j = I +  1 , .  . . ,m - 1 

othenvise 
j = i i l  

otherwise 
and in choosing the symme@ical exponential form in (5.41, we have made mst: Of the 
fact that the operator on the left-hand side of (5.3) commutes with ala&. 

Ku oeder to simplify (5.4), we use the folinwkig elementary result. 
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Theorem. If a; (a!) are Fermi destiuction (creation) operatom, then for arbitrary 
matrices A = (A,,) and 3 = (3*,), 

T Matsubara and C J Thonlpson 

where the matrix C = (C,,) is defined by 

Proof. From the Baker-Hansdorf theorem [i4] 
ez = exla Y XI. e e  

where 2 is a sum of Lie elements generated from X and Y under commutation 

[ X ,  Y ]  = X Y  - Y X  (5.10) 

The required results (5.8) follows immediately from this observation by noting 
that for Fermi operators a,, a!, 

[CA, ,a !o , ,CBs ,  a I a .  .] = [A% B1 ', U!%. (5.11) 

The following useful corollaries, which hold for Fermi operators a,, a!, self- 
adjoint matrices A and B and self-adjoint matrix C defined by ( 5 4 ,  are a direct 
consequence of the above theorem. 

CoroNary I. 

$81 * . I  ' r l  

In older to prove the corollaeies, we make a sanonlcal (unitary) transformation 

a, = u,~,c:, a! = U:;,.!, (5.14) 

to Fermi operators c+, cjr in which tike exponent on the right-hand side of (5.7) is 
diagonal. In this represexation, the left-band side of (5.12) can be written as 

,' 2 ,  
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wbere {A,] are the eigenvalues of the matrix C. The required resuit (5.12) follows 
from (5.8) and (5.15) using elementary properties of determinants. 

Similarly, the left-hand side of (5.13) can be written as 

(5.16) 

= ( ~ + e c ) ~ d e t ( ~ + e C )  

from which the stated result (5.13) easily follows. 

6wo-o-sitz function (5.4) cax be written in the fonn 
COmbhhg the aboqe results, we then see that the gand-canonical single-particle 

61, = (-2)f-""a(iT+ eA~zeBe"/2)~det( l I+ eAeB)[det(ri+ e")]-' (5.17) 

wkrc the ma??i%s A ?a(! E? :!e def?~ec! by (5.5) 2nd (5.5). 

is a diaganal matrix which can be witten in the form 
%e expression (5.17) can be fmher simpliiied by noting from (5.5) that exp(A) 

eA =n+p(l,j) (5.18) 

whcit. P ( l , m )  is a (diagonal) projection matrix with unit elements in positions i = 
.I i = ~ id .1 - , -,...,.. ~~ ~ *n-i I -"..-I_.- lnri 7pmreispwhppp sinrp 1...-- L ~ [ A ~ ~ I  LIIII\.- ,-,, = - r e Y , , ( ~ m i  L1"'\l -,-,, nn = ~ 

1, it is then an elementary exercise to check that 

G,, = (-2)f-m+Z(HfeAeB)~def(n+ P ( l , m ) M )  (5.19) 

(5.20) 

$. ~~Q~~~~~~~~~ pi%p&?r&2§ 

In order to derive thermodynamic propeplies of the U = 00 model, we use the 
-?elation (2.5) Eonneceing the canonical partition functions for the U = 05 model 
and the spinless Fewion model (2.7). Tlnus from (2.5) the grand-canonical partition 
function for the U = m model is given by 

Zg(z ,V,T)  = zNZg(V ,T)  = C ( 2 z ) V - K Z ~ ( V , T )  
V V 

N=0 K=O 

Y 
= (zz)Vz:[(3t)-',v,T] = 

k=I 
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where ZE denotes the grand-fanonical partition function for the spinless fermion 
model, 

ek = 2t cos (2wklV)  (6.2) 

and in the last step of (6.11, we have used the well known result 

(6.3) 

where r' = exp(8p'). 
The dens@ of fermions in the U = OJ model is thus ziven from (6.11 by 

V a 
az p =  V - ' z - i o p Z ~ ( z , V , i )  = V - ' ~ 2 ~ ( 2 z + e ~ ' ~ ) ~ - ~  (6.4) 

k l  

and the average energy per site is given by 

and 



Slrongly-correlared Hubbard chain: I 5337 

or in other words, the Fermi energy 

fp = p = 2 t c o s n ( l -  p ) .  (6.9) 

Simdarly, in the limit of zero temperature, the groundstate energy from (6.7) is 
given by 

- - -2tn-'[P - ( p / 2 t ) 2 1 " ~  = -ztn-'sin np (6.10) 

in agreement with the results of Lieb and Wu [7] where in the last step, we have 
made use of (6.9). 

Magnetic properties of the U = CO model are also easy to obtain hy the methods 
developed UI previous sections. Thus in the presence of a magnetic field H, the 
Haniiltonian (2.1) is repiaced by 

%parating the charge 2nd spin degrees of freedom as in section 3, vue obtain in 
place of (2.5) the result 

ZF-,(V,T) = (2coshB)v-KZg(V,T) (6.12) 

where Z& is defined as before by (2.6) and B = S H .  
It easily follows that the grand-canonical partition function is now given by 

V 
Z;(r ,V,T,B)  = (Zz cosh B + e P f k )  (6.13) 

k=l 

and hence the isothermal susceptibility is given by 

a= 
ae x = P,V-'log Z,"(Z, v, T, B) 

V 
= @'%'-I z { 2 z c o s h  B(2tcosh  B + ePEk)-'  

k l  

- (Zrsinh ~ j ' ( z ~ ~ ~ ~ h  B + efi-j-2j. 

In particular in zero field. we obtain 

v- 
xo = pv-' C 2 r ( Z r  + = Pp 

k l  

in agreement with Sokolof [IO] and Beni et al [Ill. 

(6.i4) 

(6.15) 
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7. Discussion 

In this paper we have shown with the aid of a canonical transformation, that separates 
charge and spin degree of freedom, that the strongly correlated onedimensional 
Hubbard model with infinite (U = CO) on-site repulsion is related to a corresponding 
spinless free-Fermion lattice model. 

The thermodynamic properties of the two models were shown ?o be very closely 
related whereas the single-particle two-site function for the U = m model ~ias shom 
to be related to a modified many-site function for the spinless model which involves 
many-point correlation funcrions. The latter was shown to be expressinle in terms of 
the inverse of a certain mdtrix which should be amenable to numePica1 analysis. 

In a subsequent paper, we d l  study the eqressiori derived in this paper numer- 
ically for finite and inhi te  lattices. The single-particle two-site function G,, (5.1) 
and (5.19) in particular, which i? related to the momentum distribution thrmgh 

T Matsubara and C J Thompson 

" V  

n(k) = V1 2 exp[Znik(l- m)/V]G;, (7.1) 
IS1 m=1 

is Of significant interest in the study of strongly correlated systems such as the Hub- 
bard model. In this regard our resuls should provide am altemative test of Ogata 
and Shiba's suggestion 1121 that at zero temperature the momentum distribution for 
the U = m One-dbeIISiORal model has a weak algebraic singularity at the Fermi 
momentum I+, given from (6.9) by 

kF = n(1- p ) .  (7.2) 

~ S ~ o ~ ~ ~ @ ~ ~ ~ ~ ~  
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